How to Shuffle in Public
نویسندگان
چکیده
We show how to public-key obfuscate two commonly used shuffles: decryption shuffles which permute and decrypt ciphertexts, and re-encryption shuffles which permute and re-encrypt ciphertexts. Given a trusted party that samples and obfuscates a shuffle before any ciphertexts are received, this reduces the problem of constructing a mix-net to verifiable joint decryption. We construct a decryption shuffle from any additively homomorphic cryptosystem and show how it can be public-key obfuscated. This construction does not allow efficient distributed verifiable decryption. Then we show how to public-key obfuscate: a decryption shuffle based on the Boneh-Goh-Nissim (BGN) cryptosystem, and a re-encryption shuffle based on the Paillier cryptosystem. Both constructions allow efficient distributed verifiable decryption. In the Paillier case we identify and exploit a previously overlooked “homomorphic” property of the cryptosystem. Finally, we give a distributed protocol for sampling and obfuscating each of the above shuffles and show how it can be used in a trivial way to construct a universally composable mix-net. Our constructions are practical when the number of senders N is reasonably small, e.g. N = 350 in the BGN case and N = 2000 in the Paillier case.
منابع مشابه
Efficiently Shuffling in Public
We revisit shuffling in public [AW07a], a scheme which allows a shuffle to be precomputed. We show how to obfuscate a Paillier shuffle with O(N log N) exponentiations, leading to a very robust and efficient mixnet: when distributed over O(N) nodes the mixnet achieves mixing in polylogarithmic time, independent of the level of privacy or verifiability required. Our construction involves the use ...
متن کاملSoluble Expression and Purification of Q59L Mutant L-asparaginase in the Presence of Chaperones in SHuffle™ T7 strain
Background and Aims: Q59L mutant of L-asparaginase enzyme from Escherichia coli (E. coli) has been introduced with lower side effects. This version of the enzyme might have potential applications in the treatment of leukemia patients. We utilized SHuffle T7 strain of E. coli, to produce the mutant enzyme in the presence of chaperone molecules. Materials and Methods: Q59LAsp gene was cloned in...
متن کاملA Public Shuffle without Private Permutations
In TCC 2007, Adida and Wikström proposed a novel approach to shuffle, called a public shuffle, in which a shuffler can perform shuffle publicly without needing information kept secret. Their scheme uses an encrypted permutation matrix to shuffle ciphertexts publicly. This approach significantly reduces the cost of constructing a mix-net to verifiable joint decryption. Though their method is suc...
متن کاملA New Public-Key Cryptosystem
It is striking to observe that two decades after the discovery of public-key cryptography, the cryptographer’s toolbox contains only a dozen of asymmetric encryption schemes. This rarity and the fact that today’s most popular schemes had so far defied all complexity classification a.ttempts strongly motivates the design of new asymmetric cryptosystems. Interestingly, the crypt,ographic communit...
متن کاملRecombinant Production of a Novel Fusion Protein: Listeriolysin O Fragment Fused to S1 Subunit Of Pertussis Toxin
Background: Some resources have suggested that genetically inactivated pertussis toxoid (PTs) bear a more protective effect than chemically inactivated products. This study aimed to produce new version of PT, by cloning an inactive pertussis toxin S1 subunit (PTS1) in a fusion form with N-terminal half of the listeriolysin O (LLO) pore-forming toxin. Methods: Deposited pdb structure file of the...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- IACR Cryptology ePrint Archive
دوره 2005 شماره
صفحات -
تاریخ انتشار 2005